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This document is one of sixteen sections t h a t  comprise the f ina l  
report  prepared by the Minneapolis-Honeywell Regulator Company f o r  the 
National Aeronautics and Space Administration under contract ~ S W - 5 6 3 .  
The report  is issued i n  the following sixteen sections t o  f a c i l i t a t e  
updating as progress warrants: 

summary 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of F in i te  Response T i m e  Control 

A Suff ic ient  Condition i n  Opt ima l  Control 

T i m e  Op t ima l  Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programing and Bounded Phase Coordinate Control 

T i m e  O p t i m a l  Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a kunded Fnase Coordinate Control 
Problem as a Problem i n  the Calculus of Variations 

A Note on System Truncation 

S ta te  Determination f o r  a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of t h e  Quadratic Penalty Function 
t o  the Determination of a Ldnear Control f o r  a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretat ion of the D r i f t - M i n i m u m  

Cri ter ion 

Principle _- 

A Minimax-Control f o r  a Plant Subjected t o  a Known Load Disturbance 

Section 1 (1541-TEt 1) provides the motivation fo r  the study e f fo r t s  
and objectively discusses the significance of the r e su l t s  obtained. The 
r e su l t s  of inconclusive and/or unsuccessf'ul investigations are presented. 
Linear programming is  reviewed i n  de ta i l  adequate f o r  sections 6, 8, and 16. 

It is shown i n  section 2 that the prrely formal procedure f o r  synthe- 
s iz ing  an optimum bang-bang controller f o r  a plant whose representation 
contains derivatives of the control variable yields  a correct  resu l t .  
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In section 3 it is shown that the problem of controlling m components 
(1 < m < n),, of the state vector for an n-th order linear constant coefficient 
plant, t o  zero in finite time can be reformulated as a problem of controlling 
a single component. 

Section 4 shows PontriagirfsMaximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for compting the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty f'unctions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is proven. The 
probiem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a refomlation of a time-optimal bounded phase 
coordinate problen into a standard calculus of variations poblem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I 2  presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for m i n i m u m  load 
disturbance effects is derived. Examples are presented. 

Section l5 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a 'certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minim condition is 

In section 16 linear programming is used to determine a control function 
that minimizes the effects of a known load disturbance. 
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AN APPLICATION OF THE QUADRATIC PENALTY FUNCTION 
CRITEEaION TO THE DETEFMINATION OF A 

LINEAR CONTROL FOR A FLEXIBLE V E K I C U *  
By E. E. Fisher $ 

ABSTRACT n. 
[ I  A linear controller is designed for a typical five-engine 

flexible rocket booster by use of the quadratic penalty function 

criterion. Consideration is given to the sensor requirement for 

controller implementation. 

controller can be approximated using less sensors than the plant 

It is shown that the optimal 

order . 4 c h i J o r L  

INTRODUCTION 

A difficult problem in the application of state vector control 

theory to the flexible vehicle is that of determining a method 

of control feedback. Control laws are determined in terms of the 

components of the state vector. Sensors, however, measure a 

blend of state vector components. 

indicate that a large number of sensom 

all of the "dominant" state vector components can be determined. 

From these components the feedback is then usually established. 

This paper will investigate the possibility of implementing a 

Superficial considerations 

is rcqubred In order that 

quadratic criterion controller using some minimal number of sensors, 

that is, using less than the above mentioned large number of sensors. 

$ Research Scientist , Minneapolis-Honeywell Regulator Company, 
Minneapolis, Painnesota. 
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S ~ e c i f ' i c a l l y ,  i t  i s  assumed a f i n i t e  flexure mode model 

of the f lex ib le  vehicle i s  given. Such a model i s  t o  include a l l  

f lexure modes which w i l l  be o f  importance f o r  the type of' 

control lers  and wind disturbances under consideration. L e t  n 

be the order of t h i s  model. A l i n e a r  control law w i l l  be 

determined by use of the quadratic c r i t e r ion .  

investigated by which the derived cont ro l le r  can be implemented 

using l e s s  than n sensors. 

Methods w i l l  be 

The dynamics of the  assumed vehicle axe p x s e n t e d  f irst .  

VEHICLE DYNAMICS 

The dynamical equations of a typ ica l  five-engine f lex ib le  

Consideration i s  given t o  r i g id  rocket booster are presented. 

body and three flexure degrees of freedom. 

engine dynamics a re  not considered. 

constant coeff ic ients  a re  assumed. The motion considered is  i n  

the p i tch  plane. 

the equations o f  motion are  equations 1 through 4. 

Fuel sloshing and 

Linear equations with 

With recourse t o  the def in i t ions  i n  Table 1 

3 Lateral  Path 
Motion ** z = -  F-X q + - m ~ + - @ +  " R' C d J q j  

j=1 m m 
2 
J 0 .  q + c l a + c 2 8 +  C e q  = O  
j=1 3 3  . 

Z f f = C p - -  V 
0 

Angular Motion 

Angular Relationship ( 3 )  

Here represents differentat ion wi th  respect t o  time. New 

variables a re  defined so that  the equations can be rewrit ten i n  

the standard s t a t e  vector form. The change of variables 
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i s  defined by equation 5. 

I .  

On t h i s  transformation the equations of  motion become those 

given by equation 6. 

(6  x = A X + b u  

Here x is a column vector with components X ~ , ~ ~ . . . X  and A 

and b are matrices as l i s t e d  below with a 

constants 

9 
and bi appropriate i d  

A =  

O a12 0 0 0 0 0 0 0  

a23 a24 O a22 “28 0 

a31 a32 a33 ‘34 a36 ‘38 0 

0 0 0 0 a45 0 0 0 0  

0 0 0 a% 0 0 0 0  

0 0 0 0 0 aT6 aT7 0 0  

0 0 0 0 0 0 0 O a B s  

0 0 0 0 0 o & -  0 0  07 

0 0 0 0 0 0 0 ag8agg 

b =  

0 

b2 

b3 

b5 

b7 

b9 

0 

0 

0 

O f  prime concern is the  information available from sensors 

f o r  feedback purposes. 

located a t  a s t a t ion  y meters from the rocketrs boosterrs t a i l ,  

i t  can be shown tha t  s,(y) will be given by equation 8. (Again 

the definit5ons I n  Table 1 are used). 

If s,(y ) is t h e  output  of an accelerometer 

. 
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If $ and Fi are replaced i n  equation (8) by their  values 

as given by equations 2 and 4 there  r e s u l t s  

Here the coeff ic ients  z 

e i t h e r  l i nea r ly  o r  through t h e  mode slope functions Yi(y). It 
is  noticed that f o r  a given fixed sensor location y the output 

of an accelerometer i s  a l inear  non-homogeneous function of the 

s t a t e  variables xl,%, ...%. 
z a p  can i n  pr inciple  be subtracted from the  sensor output, 

s,(y) w i l l  henceforth be considered given by equation ( 9 )  with 

zaO s e t  equal t o  zero. 

(y) are functions which depend on y a3 

Since the non-homogeneous term 

If Sr(y) i s  t h e  output of a r a t e  gyro located y meters from 

the rocket booster’s t a i l ,  it can be shown tha t  Sr(y)  i s  as  given 

by equation (10). 

Final ly  i f  sP(y) i s  the output of a posi t ion gyro (angular 

posi t ion)  located y meters from the rocket booster’s t a i l ,  it 

can be shown t h a t  s ( y )  I s  as given by equation (11). 
P 

The important thing t o  be noticed i s  that both r a t e  and posit ion 
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gyros measure linear combinations of the state variables 

X1JX2, . 0 oxg. 

sr(y), s (y), and sa(y) equation (10) and (11) will be rewritten 

as given by equation (12) . 
To form a correspondence between the outputs 

P 

Here the coefficients z 

functions of y. In what follows any sensor whose output  is a 

linear homogeneous function of the state variables (as the above 

are) will be called a linear sensor. 

(y) and z (y) are the appropriate rJ P3 

If the output of nine linear sensors is given, and if the 

aseociated matrix (which depends on the locations of the nine 

sensors, as well as their type) is non-singular, then the nine 

time functions xl,%, 

of the nine sensor outputs. 

determines u as a function of xl,...x 

can, in this case, in principle, be constructed. Later, consideration 

is given to the problem of implementing a given linear control 

law using less than nine sensors. 

can be expressed as a linear combination . O X 9  
Thus any control law (a rule which 

is called a control law) 9 

This suffices to introduce plant and sensor dynamics; thus 

attention is turned to controller design. 

DESIGN OF VEHICLE CONTROLLER 

BY THE QUADRATIC CRITERION 

The quadratic criterion is discussed with comments about 

its applicability to the flexible vehicle problem. The design of 
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a cont ro l le r  f o r  the given vehicle i s  then presented. 

THE: QUADRATIC PENALTY FUNCTION CRITERION 

Let a system be governed by the  s t a t e  equation . 
x = A x + b u  

where x is  an n-vector which represents the s t a t e  of the system, 

A is a constant n by n matrix, b i s  a constant n vector, and 

u i s  a scalar .  Consider the problem of determining a control law 

u = k’x 

Where k is  an n dimensional constant vector and ’ indicates 

transpose. 

Q a control l a w  u = k’x is desired which minimizes V(t) given 

by equation (15). 

For a given positive de f in i t e  symmetric matrix 

T 
(15) 2 V ( t )  = l i m  I ( x ’ a  + u2)d7 

F > o o  t 
Here t i s  the present t i m e .  

t h a t  &der* appropriate conditions of  con t ro l l ab i l i t y  there  

exists a unique posi t ive def in i te  matrix P which s a t i s f i e s  the 

Kalman (reference 3) has shown 

matrix equation 

A’P + PA .. Pbb’P + Q =: 0 (16) 

such tha t  the control u = k’x w i t h  k given by 

k = - P b  

i s  the unique optimum control. 

Designing via  the quadratic penalty c r i t e r ion  is  an 

i t e r a t i v e  process which starts with estimating the weighting 

matrix Q on the basis of physical considerations. 

i s  then solved f o r  the associated P matrix. 

Equation (16) 

The gain vector k 
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i s  established by equation (17) and the closed loop system i s  

examined f o r  physical character is t ics .  T h i s  leads t o  the need 

f o r  a re-adjustment of  t h e  weighting matrix Q and the process i s  

thus i te ra ted .  

The exact physical character is t ics  required a re  s t ab i l i za t ion  

of t he  unstable air-frame, small deviation f r o m  the desired a t t i t ude ,  

small angle of a t tack  t o  reduce bending loads, bounded engine 

def lect ion and r a t e s ,  e t c .  

of these things re su l t  automatically from t h e  quadratic c r i t e r ion .  

The quadratic c r i t e r ion  does, however, o f f e r  an orderly i t e r a t i v e  

process by which an acceptable control ler  can be constructed. Th i s  

is an advantage over some conventional methods. 

DESIGN O F  A CONTROLLER FOR THE GIVEN VEHICLE 

With the exception of  s t a b i l i t y ,  none 

Numerical values f o r  the matrices A and b are  given i n  Table 2. 

The uni t s  used a re  meters, radians, and seconds. 

comparison the character is t ic  roots  A1,A2, ... A 

are presented i n  Table 3 .  

For purposes of 

of t he  matrix A 9 

High order i n  the d i f f e ren t i a l  equations of the plant a s  

well as a natural  i n t e re s t  i n  r i g i d  body motion motivated a study 

of a f i c t i t i o u s  r i g i d  body governed by equations (18) . 
cont ro l le r  was designed f o r  t h i s  r i g i d  body by a se r i e s  of 

A 

adjustments, and re-adjustment of the matrix Q (1) . 
X = A ( l ) x ( l )  + b ( l ) u ( l )  - 

(1) 

(1) 

.(’)=[!] A(1)= 11 a22 a12 a13 a23], b(’)= (:j, K ( ’ ) = E 1 ) )  (18) 

a31 a32 a33 
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After several iterations a suitable weighting matrix Q(l) with 

corresponding matrix P(') were arrived at. The resulting closed 

loop characteristic roots were used as a criterion for the final 

selection of Q(l)* That is, the desired weighting matrix Q (1) 
was chosen on the basis of  the characteristic roots of the matrix 

A(1) + b(')k(') which resulted from Q(l). Characteristic roots 

and associated gains are presented in Table 4, 

= ls,g (1) 19 91 
sidered the desired rigid body controller. 

Weighting 

matrices used were diagonal and of the form Q(l) = 16 q (111 = 13 i 
9 0 .  The controller listed as case 4 was con- 

A fifth order system consisting of a fictitious rigid body 

with one flexure mode was considered next. Its dynamics is 

and u ( 2 )  = k(2 )  x(2> 

Here the weighting matrix Q(*) = 16 q ( 2 ) ]  was used, where the iJ i 

elements q1 ( 2 )  q2 (2) and qi2) where equal respectively to q1 (l) ,q2 (l),and 
(I); and qi2) and qk2) were chosen quite small. This building process q3 

was motivated by difficulties in solving equation (16) for high 

order systems, 

solution, integration of t b  Riccati matrix differential equation 

Although various procedures were tried in its 
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(given by equation (20)) t o  a steady state was f i n a l l y  adopted 

8s a method of solution 
* 

An i n i t i a l  estimate of P (2) ( the  solution of equation (16) 

f o r  A (2),B(2) and Q (2 ) )  was a matrix w i t h  i ts fourth and f i f t h  

rows and columns set equal t o  zero and i t s  remaining nine elements 

s e t  equal t o  the corresponding ones I n  P(’)(the solution of 

equation (16) f o r  A(l),B(l), and Q(’)). This was used as an i n i t i a l  

condition fo r  the Riccati equation which converged from there 

qui te  rapidly.  

n in th  order systems f o r  a variety of cases. 

f o r  ninth order systems are presented i n  Table 5. I n  each case 

it wa8 found tha t  the character is t ic  roots  and associated gains 

changed very l i t t l e  as the  system was b u i l t  up from the r i g i d  

body problem. 

f o r  the charac te r i s t ic  roots and associated gains.  

indicates  the progress f o r  the p matrices. 

t o  a r i g i d  body problem wi th  weighting q1 = .1, q2 = .05, and 

q3 = .5. 

(i.e., one more flexure mode) w i t h  addi t ional  weighting equal t o  

. 0001 

The process was extended t o  seventh and f i n a l l y  

Some of the r e s u l t s  

Table 6 indicates the progress of such a process 

Table 7 

Case 1 corresponds 

Each sucessive case had two more var iables  added 

It is noted that the weighting f a c t o r  w defined i n  Table 5 .......................... * 
equation (20) and i f  p ( t )  has reached a steady state equal t o  P I  
a constant, then P s a%is f i e s  equation (16) . 
shows tha t  such a steady s t a t e  i s  indeed a unique posi t ive def in i te  
solut ion of equation (16). 

It i s  eas i ly  seen that i f  P ( t )  i s  a matrix which s a t i s f i e s  

Kalman (reference 3)  

~ 
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has l i t t l e  e f f e c t  on the closed loop flexure frequencies and 

that i t s  e f f ec t  on closed loop damping goes as the square root 

of w .  

(reference 1) i s  that the coeff ic ients  of the charac te r i s t ic  

equation increase i n  magnitude with an increase i n  the nom of 

the matrix Q. 

Another trend a s  pointed out by Reynolds and Rynaski 

Previous experience w i t h  the f lex ib le  vehicle problem 

indicates  the  control ler  l i s t e d  as case 4 i n  Tables 6 and 7 as 

a reasonable control ler ,  

i t s  implementation. 

Consideration w i l l  be given next t o  

CONSTRUCTION OF THE LINEAR 

CONTROL L A W  GIVEN BY THE 

QUADRATIC CFWTElUON 

A general l i nea r  sensor with  location yi i s  defined t o  such 

tha t  i t s  output si(yi) i s  given by equation (21).  

Here the coeff ic ients  z 

indicated,  

though t h i s  dependence i s  not indicated. 

depend i n  some fashion on yi as j-3 
It is  noted tha t  si and xi a re  t i m e  functions a l -  

Let  m sensors of the 

above nature be stationed at  locations Y i ~ Y 2 ~ o * . ~ Y m  where 

m 9 .  Let the output of each sensor be multiplied by an as yet  

undetermined sensor gain yi and summed t o  form a feedback 

quantity % given by equation (22)  
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, *,k are  the  feedback gains given by the quadratic 9 If kl,% 

c r i t e r ion  (kl,k2,. * .  ,k  are  the components of the vector k as 3 
previously defined) the  desired feedback u i s  given by equation ( 2 3 ) .  

9 
U =  Z k x  

j=1 LI 

The quantity 'ir w i l l  be equal t o  u if equation (24) i s  satisfied. 

m 

i=1 Y i Z i j  = kJ j = 1,2,.. . ,9 

This equation can be interpreted a s  a vector equation i n  the 

/ 
k = (k, ,lc,, . . ,ko) . 

L C  

The vector equation i s  then that 

m 
C yizi = k. 

is1 

I n  the  event that m i s  9 and the  

independent (i .e. they span the 

e x i s t  constants y i  such that  

/ 

given by equation (26).  

(26 1 

vectors zi are  l inear ly  

nine dimensional space) there 

equation is  t rue  f o r  any 

given vector k. This  is a statement of t h e  f a c t  t ha t  nine 

independent sensors serve t o  determine the nine components of 

the state vector, 

If m i s  less than nine equation (26) w i l l  not be sa t i s f i ed  for 

* 

( T h i s  r e s u l t  was shown by Harvey in reference 2 ) .  

a rb i t r a ry  k, but only those k which l i e  i n  the  space spanned by 

*For l i n e a r  sensors a set of sensors w i l l  be said t o  be independent 
i f  the associated vectors zi are  l i nea r ly  independent. 
t a c i t l y  assumed that th i s  can be achieved by the correct var ie ty  
of sensors a t  the correct sensor locations. 

----_-------_-------_____l_l_________ 

It i s  
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~ ~ J ~ ~ 9 * ~ * S z m *  

thus fixed, solution of equation (26) with m less than nine 

Since k is given by the quadratic crit'erion and 

involves selecting 

which includes the 

on the position of 

with proper sensor 

m less than nine. 

the zi in such a way that they span a space 

vector k. 

the ith sensor yi there is some hope that, 

positioning, equation (26) can be solved for 
Because of the physical nature of the problem, 

Because the vectors zi each depend 

exact solutions are not necessary. 
m 
2 y z i=1 i i 
difference vector or its square is small. 

fore introduced as an error quantity E given by equation (27). 

For instance, the vector 

can be considered close to k if the magnitude of their 

Its square is these- 

m 
E = ( I: yiZi - k)" 

i=1 

Consideration of the actual problem at hand dictates how 

the error function E is to be used. 

zi(yi) originate from accelerometers, rate gyros, or position 

gyms. 

as yet not determined combination of accelerometers9 rate gyros, 

and position gyros. There are located at certain specific, 

though as yet undetermined, locations y1,y2,.*.,ym. 

usually the case, the error function E should be minimized with 

It is noted that the vectors 

That i s ,  the m sensors indicated in equation (27) are 

As is 

respect to its parameters to yield the 

These parameters include the m sensor gains yi and the m sensor 

positions yi. 

positions yi, the mathematical minimum may result in certain of 

the yi's being at the ends of' the booster. 

because the variables yi are defined only for 0 < yi <,L! 

best set of parameters. 

If E is minimized with respect to the sensor 

This could happen 

where 



-13- 

.)?is tl-e booster length. 

yi’s i s  not a l i nea r  problem since the yi’s en ter  the problem 

non-linearly through the  mode slope functions, For these reasons 

the e r r o r  function E w i l l  not be minimized with respect t o  the 

Y+. yi w i l l  be assumed given and the 

e r r o r  function E w i l l  be minimized ( f o r  the given yi s)  i n  terms 

Also minimization w i t h  respect t o  the 

Instead the posit ions 

of the  yi / s. The yi/ s which minimize E f o r  given fixed yi’s  

are given by %he familiar linear least squares normal equations, 

equations (28) . 
m 
z -yJ(zi-zJj  = zi.K i = i 9 2 , , , . , m  

J=1 

(Here indicates  the vector dot product) 

It i s  noted that f o r  many rocket booster problems it may 

advantageous to minimize E with respect t o  both the  yi’s 

Ti’s. T h i s  i s  not done here. 

Attention i s  now turned t o  the calculation a t  hand, 

approximation of the  feedback derived.(This i s  displayed 

Tables 6 and 7 as case 4 , )  

(28) 

be 

and 

the 

i n  

Three basic types of sensors (accelerometers, r a t e  gyros, 

and posit ion gyros) are assumed. These w i l l  have sensor gain 

z given by equation (29).  The mode shape vectors za, zr, 

functions Y,(y), U2(y), and Y3(y) whose derivatives appear i n  

equation (29 )  are given by the polynomials i n  equation (30) , 

The location variable y is assumed t o  be i n  the in t e rva l  (0,100). 

P 
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Y,(y) = .lo45 x 10 - -6319 x 1 0 - l ~  + .5917 x 10 -3 y 2 + .3273 x 10 -5 y 3 
-10 6 0.2429 x 10 -6 y 4 + .4599 x 10-8y5 -,2156 x 10 y 

y,(y) = .1349 x 10 -.7790 x loo1 0.5233 x 10 -2 y 2 

- .I167 x 10 -8 y 6 + .3451 x 10 -4 y 7 
+ .4182 x -.1115 x 10 -4 y 4 + .1575 x 10 -6 y 5 

Several sensors must be positioned in such a way that the 

gain vector k can be approximated by a linear combination of sensor 

outputs., An examination of the sensor gains (equation (29)) 
indicates at least one accelerometer must be used in order to pick 
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up x , the angle of' attack$ a t  least one r a t e  gyro must be used 

t o  determine p i tch  rate, 5; and a t  least one posi t ion gyro 

must be used i n  order t o  determine p i tch  angle, xl. It was 

found tha t  using two of each type of sensors resul ted i n  

approximate feedbacks quite close t o  the one desired.  

3 

Three 

sensor s ta t ions  were chosen a t  25, 50, and 75 meters and various 

combinations of sensor locations w e r e  selected. That is, the six 

sensors were permitted between these three s ta t ions  i n  a var ie ty  

of w a y s .  Mot a l l  l e a s t  squares solutions turned out 60 be good, 

o r  i n  f a c t  stable, although with s i x  sensors good solutions re- 

sul ted i n  two thirds of the cases. 

presented i n  Table 7. Here y1 and y2 are  accelerometer 

locations,  y3 and y4 r a t e  gyro locations,  and y5 and y6 posi t ion 

gyro locations.  The r e su l t i ng  gains kl,k2,".,k are  of course 

components of the vector ylkl + y2%,+ ...+ y9kg. 

gain vector kl,%,...,k as l isted i n  Table 5 case 4 i s  pre- 

sented i n  Table 7 f o r  comparison, The resu l t ing  closed loop 

character is t ic  roots  are  presented i n  Table 8. 

i n  two cases the closed loop is somewhat tighter than desired, 

whlle In  the other  case the closed loop is not stable. 

calculat ions performed eac i t ly  assume that the cont ro l le r  is 

Three typical  cases are 

9 
The desired 

9 

It i s  noted that 

The 

capable of responding t o  the s ignal  klxl +. . .+ k x Thus, it 9 9' 
may be that  too tight a control ler  results i n  gimbal angle 

saturat ion.  This question was not investigated.  Neither was 

the question of gust response. Finally i t  is stated that the 

sensor s ta t ions  w e r e  selected completely arbitrarily and several  

other  select ions of s ta t ions  worked equally as well, 
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CONCLUSIONS 

A linear controller for a typical rocket booster was 

designed by use of the quadratic penalty function criterion 

and its approximate implementation was accomplished using 

less sensor8 than the plant order, 

involved constitute a design method which is capable of better 

It is believed the procedi 

realization of optimal linear controllers for flexible vehicles. 

Such techniques together with the usual techniques of filtering 

very high frequency dynamics out of the sensor signals yield an 

attack to the synthesis problem for control of a very flexible 

vehicle 
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I .  

TABLE 3 

CHARACTERISTIC ROOTS OF THE OPEN LOOP SYSTEM 
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CASE 1 

y1 = -0043 

74 = -0572-5363. 
y7 = .119-13.01 

CLOSED LOOP CHARACTERISTIC RCKYTS FOR THE 

APPROXIMATE FEEDBACKS LISTED IN TABLE 7 


